Exercises

See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Vocabulary: Fill in the blanks.

1. An _____ is a function whose domain is the set of positive integers.

2. A sequence is a $\underline{}$ sequence when the domain of the function consists only of the first n positive integers.

3. When you are given one or more of the first few terms of a sequence, and all other terms of the sequence are defined using previous terms, the sequence is defined _____.

4. If n is a positive integer, then n _____ is defined as $n! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdot \cdot (n-1) \cdot n$.

5. For the sum $\sum_{i=1}^{n} a_i$, i is the ______ of summation, n is the _____ limit of summation, and 1 is the _____limit of summation.

6. The sum of the terms of a finite or infinite sequence is called a _____

Skills and Applications

Writing the Terms of a Sequence In Exercises 7-22, write the first five terms of the sequence. (Assume that n begins with 1.)

7.
$$a_n = 4n - 7$$

8.
$$a_n = -2n + 8$$

9.
$$a_n = (-1)^{n+1} + 4$$

10.
$$a_n = 1 - (-1)^n$$

11.
$$a_n = (-2)^n$$

12.
$$a_n = (\frac{1}{2})^n$$

13.
$$a_n = \frac{2}{3}$$

12.
$$a_n = (\frac{1}{2})^n$$

15.
$$a_n = \frac{1}{3}n^3$$

14.
$$a_n = 6(-1)^{n+1}$$

16.
$$a_n = \frac{1}{n^2}$$

10
$$a = n(n-1)(n-2)$$

17.
$$a_n = \frac{n}{n+2}$$
 18. $a_n = \frac{6n}{3n^2-1}$

19.
$$a_n = n(n-1)(n-2)$$
 20. $a_n = n(n^2-6)$

20.
$$a_n = n(n^2 - 6)$$

21.
$$a_n = (-1)^n \left(\frac{n}{n+1}\right)$$

22.
$$a_n = \frac{(-1)^{n+1}}{n^2+1}$$

Finding a Term of a Sequence In Exercises 23-26, find the missing term of the sequence.

23.
$$a_n = (-1)^n (3n - 2)$$

 $a_{25} = (-1)^n (3n - 2)$

24.
$$a_n = (-1)^{n-1}[n(n-1)]$$

 $a_{16} = [n(n-1)]$

25.
$$a_n = \frac{4n}{2n^2 - 3}$$

$$a_{25} =$$

$$a_{16} =$$
25. $a_n = \frac{4n}{2n^2 - 3}$
26. $a_n = \frac{4n^2 - n + 3}{n(n-1)(n+2)}$

$$a_{11} = [$$

$$a_{13} =$$

Graphing the Terms of a Sequence In Exercises 27-32, use a graphing utility to graph the first 10 terms of the sequence. (Assume that n begins with 1.)

27.
$$a_n = \frac{2}{3}n$$

28.
$$a_n = 3n + 3(-1)^n$$

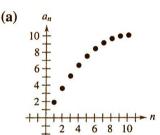
29.
$$a_n = 16(-0.5)^{n-1}$$

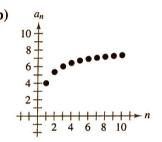
29.
$$a_n = 16(-0.5)^{n-1}$$
 30. $a_n = 8(0.75)^{n-1}$

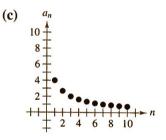
31.
$$a_n = \frac{2n}{n+1}$$
 32. $a_n = \frac{3n^2}{n^2+1}$

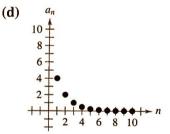
$$32. \ a_n = \frac{3n^2}{n^2 + 1}$$

Matching a Sequence with a Graph In Exercises 33-36, match the sequence with the graph of its first 10 terms. [The graphs are labeled (a), (b), (c), and (d).]









33.
$$a_n = \frac{8}{n+1}$$

34.
$$a_n = \frac{8n}{n+1}$$

35.
$$a_n = 4(0.5)^{n-1}$$

36.
$$a_n = n\left(2 - \frac{n}{10}\right)$$

Finding the nth Term of a Sequence In Exercises 37-50, write an expression for the apparent nth term (a_n) of the sequence. (Assume that n begins with 1.)

- **37.** 3, 7, 11, 15, 19, . . .
- **38.** 0, 3, 8, 15, 24, . . .
- **39.** 3, 10, 29, 66, 127, . . . **40.** 91, 82, 73, 64, 55, . . .
- **41.** 1, -1, 1, -1, 1, . . .
- **42.** 1, 3, 1, 3, 1, . . .
- **43.** $-\frac{2}{3}, \frac{3}{4}, -\frac{4}{5}, \frac{5}{6}, -\frac{6}{7}, \ldots$ **44.** $\frac{1}{2}, -\frac{1}{4}, \frac{1}{8}, -\frac{1}{16}, \ldots$ **46.** $\frac{1}{3}$, $\frac{2}{9}$, $\frac{4}{27}$, $\frac{8}{81}$, . . .
- **45.** $\frac{2}{1}$, $\frac{3}{3}$, $\frac{4}{5}$, $\frac{5}{7}$, $\frac{6}{9}$, . . .
- **48.** 2, 3, 7, 25, 121, . . .
- **47.** $1, \frac{1}{2}, \frac{1}{6}, \frac{1}{24}, \frac{1}{120}, \dots$ **49.** $\frac{1}{1}, \frac{3}{1}, \frac{9}{2}, \frac{27}{6}, \frac{81}{24}, \dots$
- **50.** $\frac{2}{1}$, $\frac{6}{3}$, $\frac{24}{7}$, $\frac{120}{15}$, $\frac{720}{31}$, ...

618

Writing the Terms of a Recursive Sequence In Exercises 51-56, write the first five terms of the sequence defined recursively.

51.
$$a_1 = 28$$
, $a_{k+1} = a_k - 4$

52.
$$a_1 = 3$$
, $a_{k+1} = 2(a_k - 1)$

53.
$$a_1 = 81$$
, $a_{k+1} = \frac{1}{3}a_k$

54.
$$a_1 = 14$$
, $a_{k+1} = (-2)a_k$

55.
$$a_0 = 1$$
, $a_1 = 2$, $a_k = a_{k-2} + \frac{1}{2}a_{k-1}$

56.
$$a_0 = -1$$
, $a_1 = 1$, $a_k = a_{k-2} + a_{k-1}$

Fibonacci Sequence In Exercises 57 and 58, use the Fibonacci sequence. (See Example 5.)

57. Write the first 12 terms of the Fibonacci sequence whose nth term is a_n and the first 10 terms of the sequence given by

$$b_n = \frac{a_{n+1}}{a_n}, \quad n \ge 1.$$

58. Using the definition for b_n in Exercise 57, show that b_n can be defined recursively by

$$b_n = 1 + \frac{1}{b_{n-1}}.$$

Writing the Terms of a Sequence Involving Factorials In Exercises 59-62, write the first five terms of the sequence. (Assume that n begins with 0.)

59.
$$a_n = \frac{5}{n!}$$

60.
$$a_n = \frac{1}{(n+1)!}$$

61.
$$a_n = \frac{(-1)^n(n+3)!}{n!}$$
 62. $a_n = \frac{(-1)^{2n+1}}{(2n+1)!}$

62.
$$a_n = \frac{(-1)^{2n+1}}{(2n+1)!}$$

Simplifying a Factorial Expression In Exercises 63-66, simplify the factorial expression.

63.
$$\frac{4!}{6!}$$

64.
$$\frac{12!}{4! \cdot 8!}$$

65.
$$\frac{(n+1)!}{n!}$$

66.
$$\frac{(2n-1)!}{(2n+1)!}$$

Finding a Sum In Exercises 67-74, find the sum.

67.
$$\sum_{i=0}^{4} 3i^2$$

68.
$$\sum_{k=1}^{4} 10$$

69.
$$\sum_{j=3}^{5} \frac{1}{j^2 - 3}$$

69.
$$\sum_{j=3}^{5} \frac{1}{j^2 - 3}$$
 70. $\sum_{i=1}^{5} (2i - 1)$

71.
$$\sum_{k=2}^{5} (k+1)^2 (k-3)^2$$

71.
$$\sum_{k=2}^{5} (k+1)^2 (k-3)$$
 72. $\sum_{i=1}^{i=1} [(i-1)^2 + (i+1)^3]$

73.
$$\sum_{i=1}^{4} \frac{i!}{2^i}$$

74.
$$\sum_{j=0}^{5} \frac{(-1)^{j}}{j!}$$

Finding a Sum In Exercises 75-78, use a graphing utility to find the sum.

75.
$$\sum_{k=0}^{4} \frac{(-1)^k}{k!}$$

76.
$$\sum_{k=0}^{4} \frac{(-1)^k}{k+1}$$

77.
$$\sum_{n=0}^{25} \frac{1}{4^n}$$

78.
$$\sum_{n=0}^{10} \frac{n!}{2^n}$$

Using Sigma Notation to Write a Sum In Exercises 79–88, use sigma notation to write the sum.

79.
$$\frac{1}{3(1)} + \frac{1}{3(2)} + \frac{1}{3(3)} + \cdots + \frac{1}{3(9)}$$

80.
$$\frac{5}{1+1} + \frac{5}{1+2} + \frac{5}{1+3} + \cdots + \frac{5}{1+15}$$

81.
$$\left[2\left(\frac{1}{8}\right) + 3\right] + \left[2\left(\frac{2}{8}\right) + 3\right] + \cdots + \left[2\left(\frac{8}{8}\right) + 3\right]$$

82.
$$\left[1-\left(\frac{1}{6}\right)^2\right]+\left[1-\left(\frac{2}{6}\right)^2\right]+\cdots+\left[1-\left(\frac{6}{6}\right)^2\right]$$

84.
$$1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \cdots - \frac{1}{128}$$

85.
$$\frac{1^2}{2} + \frac{2^2}{6} + \frac{3^2}{24} + \frac{4^2}{120} + \dots + \frac{7^2}{40,320}$$

86.
$$\frac{1}{1 \cdot 3} + \frac{1}{2 \cdot 4} + \frac{1}{3 \cdot 5} + \cdots + \frac{1}{10 \cdot 12}$$

87.
$$\frac{1}{4} + \frac{3}{8} + \frac{7}{16} + \frac{15}{32} + \frac{31}{64}$$

87.
$$\frac{1}{4} + \frac{3}{8} + \frac{7}{16} + \frac{15}{32} + \frac{31}{64}$$

88. $\frac{1}{2} + \frac{2}{4} + \frac{6}{8} + \frac{24}{16} + \frac{120}{32} + \frac{720}{64}$

Finding a Partial Sum of a Series In Exercises 89-92, find the (a) third, (b) fourth, and (c) fifth partial sums of the series.

89.
$$\sum_{i=1}^{\infty} \left(\frac{1}{2}\right)^{i}$$

90.
$$\sum_{i=1}^{\infty} 2(\frac{1}{3})^{i}$$

91.
$$\sum_{n=1}^{\infty} 4(-\frac{1}{2})^n$$

92.
$$\sum_{n=1}^{\infty} 5(-\frac{1}{4})^n$$

国数国 Finding the Sum of an Infinite Series In Exercises 93-96, find the sum of the infinite series.

93.
$$\sum_{i=1}^{\infty} \frac{6}{10^i}$$

94.
$$\sum_{k=1}^{\infty} \left(\frac{1}{10}\right)^k$$

95.
$$\sum_{k=1}^{\infty} 7 \left(\frac{1}{10} \right)^k$$

96.
$$\sum_{i=1}^{\infty} \frac{2}{10^i}$$