Circuit Training - Product and Quotient Rules

Name _____

Directions: Begin in cell #1. Find the derivative. Search for your answer, and then call that cell #2. Proceed in this manner until you complete the circuit. You may need to attach additional sheets to show your best work.

Answer: $-\frac{7}{r^2}$

#_1_
$$y = (2x - 5)(3x + 7)$$

Answer: $\frac{5x^2 + 18x + 9}{2\sqrt{x}}$

#____
$$y = \cos^2 x$$

Answer: $\sec^2 x$

$$sec^2x$$

$$y = \frac{3x+7}{x^3}$$

Answer: $-\frac{9}{(3x+7)^2}$

$$y = \frac{1 + \cos x}{1 + \sin x}$$

Answer:
$$\frac{-2x\sin x - \cos x + x^2\cos x}{\sin^2 x}$$

#____
$$y = \frac{x^2}{3x+7}$$

Answer: $-\frac{2}{3}x^2 - \frac{11}{9}x + \frac{17}{18}$

$$# \underline{\qquad} y = \sqrt{x}(x+3)^2$$

Answer: 12x - 1

$$12x - 1$$

$$y = \frac{2x-5}{3x+7}$$

Answer: $\sec x \tan x$

____ Given f(5) = 3, f'(5) = 3x + 7, g(5) = 2x - 1, $g'(5) = \frac{1}{2}$. If $h(t) = f(t) \cdot g(t)$, calculate h'(5).

Answer:
$$\frac{-3(2x+7)}{x^4}$$

$$y = \frac{3x+7}{\sqrt{x}}$$

Answer: $2 \sin x \cos x$

_____ $y = \tan x$

(HINT: Rewrite as $\frac{\sin x}{\cos x}$.)

Answer: $x(2\cos x - x\sin x)$	Answer: $-2 \sin x \cos x$
# $y = x \sin x$	# $y = \csc x$
Answer: $6x^2 + 11x - \frac{11}{2}$	Answer: $\frac{3x-7}{2x\sqrt{x}}$
# $y = \cot x$	# $y = \sec x$ (HINT: Rewrite this trig function.)
Answer: $\frac{3x^2+14x}{(3x+7)^2}$	Answer: $-\csc x \cot x$
$# \underline{\qquad} y = \frac{3x^2 + 7x}{x^2}$	$\# \underline{\qquad} y = \frac{1 - x^2}{\sin x}$
Answer: $x \cos x + \sin x$	Answer: $\frac{29}{(4-3)^2}$
$\# \underline{\qquad} y = \frac{3}{3x+7}$	# $y = x^2 \cos x$
Answer: $-\csc^2 x$	Anguar, $\sin x + \cos x + 1$
# Given $f(5) = 3$, $f'(5) = 3x + 7$, $g(5) = 2x - 1$, $g'(5) = \frac{1}{2}$. If $k(t) = \frac{g(t)}{f(t)}$, calculate $k'(5)$.	Answer: $-\frac{\sin x + \cos x + 1}{(1 + \sin x)^2}$ # $y = \sin^2 x$ (HINT: Rewrite as $\sin x \cdot \sin x$.)