Chain	Rule:
Chain	ituic.

Power Rule, a & n constant.	Exponential Function, base <i>e</i> .	Exponential function, base a.
$\frac{d}{dx}[au^n]$	$\frac{d}{dx}[e^u]$	$\frac{d}{dx}[a^u]$
ax	<i>ux</i>	ux
d	d	d
$\frac{d}{dx}[\sin u]$	$\frac{d}{dx}[\cos u]$	$\frac{d}{dx}[\tan u]$
		<i>a</i>
d	4	d
$\frac{d}{dx}[\sec u]$	$\frac{d}{dx}[\csc u]$	$\frac{d}{dx}[\cot u]$
$dx^{[bbb]}$	$dx^{[csc u]}$	$dx^{[cotu]}$
	1	L

Implicit Differentiation:

1. Find $\frac{dy}{dx}$ given $x^2 - 3xy + 4y^5 = 100$.

2. Find $\frac{d^2B}{dt^2}$ in terms of B given $\frac{dB}{dt} = 6\sqrt{10 - B}$.

Derivatives	of	Inverse	Functions:

If h(x) and g(x) are inverses, then h(g(x)) = x. What happens when we differentiate that equation?

- 1. Given that $p(x) = \sqrt[3]{2x-1}$ find $[p^{-1}]'(5)$.
- 2. The function f(x) is an increasing function about which little else is known other than f(2) = 7 and f'(2) = 5. Find $(f^{-1})'(7)$

More derivatives to have on quick recall in your brain!

with derivatives to have on quick recan in your train:					
$\frac{d}{dx}[\ln u]$	$\frac{d}{dx}\left[\frac{1}{u}\right]$	$\frac{d}{dx}[\sqrt{u}]$			
d , , ,	d , , ,	d ,			
$\frac{d}{dx}[\arcsin u]$	$\frac{d}{dx}[\cos^{-1}u]$	$\frac{d}{dx}[\arctan u]$			

For practice, do the Level 2 Four Corners and the Chain Rule Circuit that you can find in the shared folder! Also you can search "Implicit Differentiation" and "Derivatives of Inverses" to acquire more practice.