Circuit Training - Mean Value Theorem

Name _____

In each case with no additional directions, verify that the function satisfies the hypotheses of the Mean Value Theorem on the given interval. Then, find all numbers *c* that satisfy the conclusion of the Mean Value Theorem. Only use a calculator where you see the icon. Begin in cell #1, work the problem, search for your answer(s), call that cell #2 and proceed in this manner until you complete the circuit.

Answer:

$$y = x^2 - 4x + 7$$
, $[-4, 1]$

Answer:

-12

Where on the interval $[0,\pi]$ is the secant line parallel to the tangent line for $y=x\sin x$?

Answer:

$$y = \frac{1}{3}x^3$$
, [-3, 3]

Answer: $\pm \frac{4}{\sqrt{3}}$

$$y = x\sqrt{x+5} \ , \quad [-5,0]$$

Answer:

e-1

$$y = \sin(2x) \ , \ \left[0, \frac{\pi}{2}\right]$$

Answer: $\pm\sqrt{3}$

$$y = \sqrt{x-1} \ , \quad [1,10]$$

Answer: 3.433

The function g(x) is continuous on the closed interval [8, 10] and differentiable on the open interval (8, 10). The value x = 8.5 satisfies the conditions of the Mean Value Theorem on the interval [8, 10]. What is g(10) given g'(8.5) = -9 and g(8) = 6?

Answer:

1: 4

$$y = -x^3 + 3x$$
, $[-4, 4]$

Answer: $-2 + \sqrt{3}$

 $y = \frac{1}{x+2}$, [-3,-1]

Answer: $\frac{\pi}{4}$

 $y = 2e^x$, [0, ln 5]

Answer: 2.029

$$y = \begin{cases} x^2, & x \le 1 \\ 2x - 1, x > 1 \end{cases} [-1, 4]$$

Answer: $-\frac{10}{3}$

$$y = \sqrt[3]{(2x-3)^2}$$
, $\left[\frac{3}{2}, \frac{11}{2}\right]$

π	

Answer: Mean Value Theorem does not apply since the function is not differentiable on the given interval.

The position of a toy car moving back and forth along a horizontal track is modeled by the equation $x(t) = -\frac{2}{3}t^3 - \frac{1}{2}t^2 + 10$ for $t \ge 0$. Determine when the instantaneous velocity of the toy car is the same as the average velocity of the toy car on the closed interval [0, 6].

Answer: Mean Value Theorem does not apply since the function is not continuous on the given interval.

$$y = \ln x \ , \ [1, e]$$

Answer: $\ln\left(\frac{4}{\ln 5}\right)$

$$y = |3x + 6|$$
, $[-4, 0]$

Answer: 2.685

$$y = \frac{1}{x+2}$$
, [-1,1]