Example 1: Extreme Values / Exploring Accumulations of Change

The graph of a differentiable function h(x) is shown below on the closed interval [-4, 4].

The function h(x) has x-intercepts on the interval [-4, 4] at x = -3.8, x = -1, x = 0, and x = 3.4. Also, h(x) has horizontal tangents at x = -2.9, x = -0.5, and x = 2.2. The areas of the regions bounded by the x-axis and the graph of h(x) on the intervals [-1, 0], [0, 3.4] and [3.4, 4] are 0.3, 12, and 2, respectively.

For all x, $g(x) = 11 + \int_0^x h(t)dt$.

- (a) Find:
- g(3.4)

- g(4) g(-1) g'(3.4)
- g''(2.2)
- (b) Find the maximum and minimum of g(x) on the interval [-1,4]. Explain your answers.

Example 2: Approximating areas with Riemann Sums

Little is known about the function v(t) except selected values given in the table. Use a _____ with the four sub intervals indicated by the data in the table to approximate $\int_{-\infty}^{\infty} v(t)dt$.

			7	7	
t	-2	1	6	7	10
v(t)	3	4	-9	2	0

- (a) left Riemann
- (b) right Riemann
- (c) trapezoidal

Note: We did an example of a midpoint sum in one of the Unit 8 videos. ©

Example 3: Fundamental Theorem of Calculus

$$(a) \int_4^9 \frac{1}{2\sqrt{x}} dx =$$

(b)
$$\frac{d}{dx} \left[\int_{a}^{x^3} \frac{1}{t^2 + t - 5} dt \right] =$$

Example 4: Properties of Definite Integrals

Given $\int_{3}^{6} f(x)dx = 7.5$, $\int_{5}^{3} f(x)dx = 2$, and $\int_{6}^{3} g(x)dx = -12$, determine:

(a)
$$\int_{5}^{6} f(x) dx$$

(b)
$$\int_{3}^{6} g(x)dx$$

(b)
$$\int_{3}^{6} g(x)dx$$
 (c) $\int_{3}^{6} [4f(x) - 2g(x) + 4]dx$

Example 5: Integration Blast! (Separate paper probably required!)

(a)
$$\int \sin\theta d\theta$$

(b)
$$\int \frac{1-x}{1+x^2} dx$$

(c)
$$\int \frac{1}{(2-G)^{2/3}} dG$$

(d)
$$\int_{-5}^{5} \sqrt{25 - x^2} dx$$

Remember: What's the integral of $\frac{1}{cabin}$ with respect to *cabin*? House Boat!