12.1 Exercises

See CalcChat.com for interial help and worked-out solutions to odd-numbered exercises.

Vocabulary: Fill in the blanks.

- 1. If f(x) becomes arbitrarily close to a unique number L as x approaches c from either side, then the _____ of f(x) as x approaches c is L.
- 2. To evaluate the limit of a polynomial function, use _____

Skills and Applications

• 3. Geometry • • • • • •

You create an open box from a square piece of material 24 centimeters on a side. You

cut equal squares with sides of length x from the corners and turn up the sides.

- (a) Draw and label a diagram that represents the box.
- (b) Write a function V that represents the volume of the box.
- (c) The box has a maximum volume when x = 4. Use a graphing utility to complete the table and observe the behavior of the function as x approaches 4. Use the table to find $\lim_{x \to a} V(x)$.

x	3	3.5	3.9	4	4.1	4.5	5
V(x)							

- (d) Use the graphing utility to graph the volume function. Verify that the volume is maximum when x = 4.
- 4. Geometry A right triangle has a hypotenuse of $\sqrt{18}$ inches.
 - (a) Draw and label a diagram that shows the base x and height y of the triangle.
 - (b) Write a function A in terms of x that represents the area of the triangle.
 - (c) The triangle has a maximum area when x = 3 inches. Use a graphing utility to complete the table and observe the behavior of the function as x approaches 3. Use the table to find $\lim_{x \to 2} A(x)$.

					~ /.		
x	2	2.5	2.9	3	3.1	3.5	4
A(x)							

(d) Use the graphing utility to graph the area function. Verify that the area is maximum when x = 3 inches.

Estimating a Limit Numerically In Exercises 5-10, complete the table and use the result to estimate the limit numerically. Determine whether it is possible to reach the limit.

5. $\lim_{x \to 1} (7x + 3)$

x	0.9	0.99	0.999	1	1.001	1.01	1.1
f(x)				?			

6. $\lim_{x \to -1} (3x^2 + 2x - 6)$

x	-1.1	-1.01	-1.001	-1
f(x)				?

·x	-0.999	-0.99	-0.9
f(x)			

7. $\lim_{x \to -2} \frac{x+2}{x^2-4}$

x	-2.1	-2.01	-2.001	-2
f(x)				?

x	-1.999	-1.99	-1.9
f(x)			

8. $\lim_{x\to 3} \frac{x-3}{x^2-2x-3}$

x	2.9	2.99	2.999	3	3.001	3.01	3.1
f(x)				?			

 $9. \lim_{x\to 0} \frac{\sin 2x}{x}$

x	-0.1	-0.01	-0.001	0
f(x)				?

x	0.001	0.01	0.1
f(x)			

10. $\lim_{x\to 0} \frac{1}{2x}$

(x)	-0.1	-0.01	-0.001	0
f(x)				?
x	0.001	0.01	0.1	
f(x)				

Using a Graphing Utility to Estimate a Limit In Using a 11-22, use a graphing utility to create a Exercises alues for the function and estimate the limit table of the confirm your result graphically.

11.
$$\lim_{x \to 1} \frac{x - 1}{x^2 + 2x - 3}$$

12.
$$\lim_{x \to -2} \frac{x+2}{x^2+5x+6}$$

13.
$$\lim_{x\to 0} \frac{\sqrt{x+5} - \sqrt{5}}{x}$$

13.
$$\lim_{x \to 0} \frac{\sqrt{x+5} - \sqrt{5}}{x}$$
14. $\lim_{x \to -3} \frac{\sqrt{1-x-2}}{x+3}$

15.
$$\lim_{x \to -4} \frac{\frac{x}{x+2} - 2}{x+4}$$

15.
$$\lim_{x \to -4} \frac{\frac{x}{x+2} - 2}{x+4}$$
 16. $\lim_{x \to 2} \frac{\frac{1}{x+2} - \frac{1}{4}}{x-2}$

17.
$$\lim_{x\to 0} \frac{\sin^2 x}{x}$$

18.
$$\lim_{x \to 0} \frac{2x}{\tan 4x}$$

19.
$$\lim_{x\to 0} \frac{e^{2x}-1}{2x}$$

20.
$$\lim_{x\to 0} \frac{1-e^{-4x}}{x}$$

21.
$$\lim_{x \to 1} \frac{\ln(2x-1)}{x-1}$$

22.
$$\lim_{x \to 1} \frac{\ln x^2}{x - 1}$$

Using a Graph to Find a Limit In Exercises 23 and 24, graph the function and find the limit (if it exists) as x approaches 2.

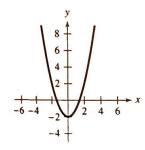
23.
$$f(x) = \begin{cases} 2x + 1, & x < 2 \\ x + 3, & x \ge 2 \end{cases}$$

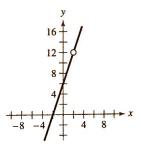
24.
$$f(x) = \begin{cases} -2x, & x \le 2 \\ x^2 - 4x + 1, & x > 2 \end{cases}$$

Using a Graph to Find a Limit In Exercises 25-32, use the graph to find the limit, if it exists. If the limit does not exist, explain why.

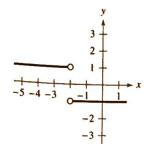
25.
$$\lim_{x\to -2} (x^2-2)$$

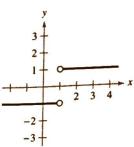
26.
$$\lim_{x\to 2} \frac{3x^2-12}{x-2}$$





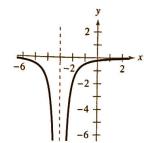
27.
$$\lim_{x \to -2} -\frac{|x+2|}{x+2}$$

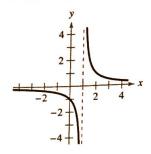




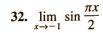
29.
$$\lim_{x\to -3} -\frac{2}{(x+3)^2}$$

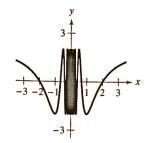
30.
$$\lim_{x\to 1} \frac{1}{x-1}$$

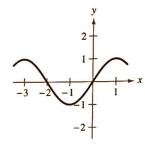




31.
$$\lim_{x\to 0} 2\cos\frac{\pi}{x}$$







Determining Whether a Limit Exists In Exercises 33-40, use a graphing utility to graph the function and use the graph to determine whether the limit exists. If the limit does not exist, explain why.

33.
$$f(x) = \frac{5}{2 + e^{1/x}}$$
, $\lim_{x \to 0} f(x)$

34.
$$f(x) = \ln(7 - x)$$
, $\lim_{x \to -1} f(x)$

35.
$$f(x) = \cos \frac{1}{x}$$
, $\lim_{x \to 0} f(x)$

36.
$$f(x) = \sin \pi x$$
, $\lim_{x \to 1} f(x)$

37.
$$f(x) = \frac{\sqrt{x+3}-1}{x-4}$$
, $\lim_{x\to 4} f(x)$

38.
$$f(x) = \frac{\sqrt{x+5}-4}{x-2}$$
, $\lim_{x\to 2} f(x)$

39.
$$f(x) = \frac{x-1}{x^2-4x+3}$$
, $\lim_{x\to 1} f(x)$

40.
$$f(x) = \frac{7}{x-3}$$
, $\lim_{x\to 3} f(x)$

42, use the given information to evaluate each limit.

- 41. $\lim_{x \to c} f(x) = 3$, $\lim_{x \to c} g(x) = 6$

 - (a) $\lim_{x \to c} [-2g(x)]$ (b) $\lim_{x \to c} [f(x) + g(x)]$ (c) $\lim_{x \to c} \frac{f(x)}{g(x)}$ (d) $\lim_{x \to c} \sqrt{f(x)}$
- **42.** $\lim_{x\to c} f(x) = 5$, $\lim_{x\to c} g(x) = -2$
- (a) $\lim_{x \to c} [f(x) + g(x)]^2$ (b) $\lim_{x \to c} [6f(x)g(x)]$ (c) $\lim_{x \to c} \frac{5g(x)}{4f(x)}$ (d) $\lim_{x \to c} \frac{1}{\sqrt{f(x)}}$

Evaluating Limits In Exercises 43 and 44, find (a) $\lim_{x\to 2} f(x)$, (b) $\lim_{x\to 2} g(x)$, (c) $\lim_{x\to 2} [f(x)g(x)]$, and (d) $\lim_{x\to 2} [g(x)-f(x)]$.

- **43.** $f(x) = x^3$, $g(x) = \frac{\sqrt{x^2 + 5}}{2x^2}$
- **44.** $f(x) = \frac{x}{3-x}$, $g(x) = \sin \pi x$

国家 Evaluating a Limit by Substitution In Exercises 45-64, find the Substitution In Exercise limit by direct substitution.

- 45. $\lim_{x \to 4} (8 x^2)$ 46. $\lim_{x \to -2} (\frac{1}{2}x^3 5x)$ 47. $\lim_{x \to -3} (2x^2 + 4x + 1)$ 48. $\lim_{x \to -3} (x^3 3x + 8)$ 49. $\lim_{x \to 2} (-\frac{12}{x})$ 50. $\lim_{x \to -4} \frac{8}{x 4}$

- 51. $\lim_{x \to -2} \frac{2x}{2x^2 3}$
- 52. $\lim_{x\to 5} \frac{x-2}{x^2-3x+2}$
- 53. $\lim_{x\to -1} \frac{6x+5}{3x-7}$
- 54. $\lim_{x\to 3} \frac{x^2+1}{x}$
- 55. $\lim_{x \to -3} \sqrt{6-x}$
- **56.** $\lim_{x\to 3} \sqrt[3]{x^2-1}$
- 57. $\lim_{x \to 7} \frac{5x}{\sqrt{x+2}}$
- 58. $\lim_{x\to 8} \frac{\sqrt{x+1}}{x-4}$
- $59. \lim_{x\to 3} e^x$
- **60.** $\lim_{x \to e} \ln x$
- 61. $\lim_{x\to\pi}\cos x$
- **62.** $\lim_{x \to \pi/2} \tan 2x$
- 63. $\lim_{x \to 1/2} \arcsin x$
- 64. $\lim_{x \to 1} \arccos \frac{x}{2}$

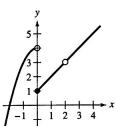
Exploration

True or False? In Exercises 65 and 66, determine whether the statement is true or false. Justify your answer.

- 65. The limit of a function as x approaches c does not exist when the function approaches -3 from the left of c and 3 from the right of c.
- 66. The limit of the product of two functions is equal to the product of the limits of the two functions.

- Evaluating Limits In Exercises 41 and 67. Think About It From Exercises 5-10, select a limit that is possible to reach and one that is not possible to
 - (a) Use a graphing utility to graph the corresponding functions using a standard viewing window. Do the graphs reveal whether it is possible to reach the limit? Explain.
 - (b) Use the graphing utility to graph the corresponding functions using a decimal setting. Do the graphs reveal whether it is possible to reach the limit? Explain.
 - 68. Think About It Use the results of Exercise 67 to draw a conclusion as to whether you can use the graph generated by a graphing utility to determine reliably whether it is possible to reach a limit.
 - 69. Writing Write a brief description of the meaning of the notation $\lim_{x\to 5} f(x) = 12$.

HOW DO YOU SEE IT? Use the graph of the function f to decide whether the value of the given quantity exists. If it does, find it. If not, explain why.



(a) f(0) (b) $\lim_{x\to 0} f(x)$ (c) f(2) (d) $\lim_{x\to 2} f(x)$

Error Analysis In Exercises 71 and 72, describe the error.

- 71. When f(2) = 4, $\lim_{x \to 2} f(x) = 4$.
- **72.** When $\lim_{x\to 2} f(x) = 4$, f(2) = 4.
- 73. Think About It Use a graphing utility to graph the tangent function. What are $\lim_{x\to 0} \tan x$ and $\lim_{x\to \pi/4} \tan x$? What can you conclude about the existence of the limit $\lim_{x\to\pi/2}\tan x?$
- 74. Writing Use a graphing utility to graph the function

$$f(x) = \frac{x^2 - 3x - 10}{x - 5}.$$

Use the *trace* feature to approximate $\lim_{x\to 4} f(x)$. What appears to be the value of $\lim_{x\to 5} f(x)$? Is f defined at x = 5? Does this affect the existence of the limit as xapproaches 5?